Boundary value problems for singular second-order functional differential equations
نویسندگان
چکیده
منابع مشابه
Periodic Boundary Value Problems for Second-Order Functional Differential Equations
Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملSingular Higher Order Boundary Value Problems for Ordinary Differential Equations
This paper is somewhat of an extension of the recent work done by Kunkel [6]. Kunkel looked at an extension of Rachu̇nková and Rachu̇nek’s work where they studied a second order singular boundary value problem for the discrete p-Laplacian, φp(x) = |x|x [7]. Kunkel’s results extend theirs to the second order differential case, but only for p = 2, i.e. φ2(x) = x. In this paper, we extend Kunkel’s w...
متن کاملBoundary value problem for second-order impulsive functional differential equations
This paper discusses a kind of linear boundary value problem for a nonlinear second order impulsive functional differential equations. We establish several existence results by using the lower and upper solutions and monotone iterative techniques. An example is discussed to illustrate the efficiency of the obtained result. © 2005 Elsevier Inc. All rights reserved.
متن کاملPositive solutions of singular boundary value problems for second order impulsive differential equations
This paper is devoted to study the positive solutions of nonlinear singular two-point boundary value problems for second-order impulsive differential equations.The existence of positive solutions is established by using the fixed point theorem in cones. Mathematics Subject Classification: 34B15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1994
ISSN: 0377-0427
DOI: 10.1016/0377-0427(94)90065-5